Clinical practice guidelines and organizational adaptation: A framework for analyzing economic effects

John E. Schneider

University of Iowa and Veterans Administration Medical Center

N. Andrew Peterson

University of Iowa

1 2 3

4 5

6 7 8

9 10

15 16

17

18

19 20

21

22 23

24

25 26

27

28 29 30

31

32

Thomas E. Vaughn

University of Iowa and Veterans Administration Medical Center

Eric N. Mooss

Alegent Health

Bradley N. Doebbeling

Indiana University and Roudebush VA Center on Implementing Evidence-Based Practice

Objectives: The overall objective of this article was to review the theoretical and conceptual dimensions of how the implementation of clinical practice guidelines (CPGs) is likely to affect treatment costs.

33 Methods: An important limitation of the extant literature on the cost effects of CPGs is 34 that the main focus has been on clinical adaptation. We submit that the process 35 innovation aspects of CPGs require changes in both clinical and organizational dimensions. We identify five organizational factors that are likely to affect the relationship 36 between CPGs and total treatment costs: implementation, coordination, learning, human 37 resources, and information. We review the literature supporting each of these factors. 38 Results: The net organizational effects of CPGs on costs depends on whether the 39 cost-reducing properties of coordination, learning, and human resource management 40 offset potential cost increases due to implementation and information management. 41 **Conclusions:** Studies of the cost effects of clinical practice guidelines should attempt to 42 measure, to the extent possible, the effects of each of these clinical and organizational factors.

- 43
- 44 45

Keywords: Clinical practice guidelines, Cost effectiveness analysis, Economic efficiency, Process innovation

- 46 47
- 48 49
- 50

Dr. Schneider is supported by a Merit Review Entry Program Award (MRP 020111) and an Investigator Initiated Award (IIR 020111) from the Health 51 Services Research and Development Service, Veterans Health Administration, Department of Veterans Affairs. Dr. Doebbeling was supported by Investigator 52 Initiated Research grants (IIR 020111, CPI 99126, and CPI 01141), an Epidemiology Merit Review, and a Health Services Research and Development Center Grant (HFP 04-148) from the Veterans Health Administration, Department of Veterans Affairs. Dr. Doebbeling was also supported by a National Institutes 53 of Health K-award (K30 HL04117-01A1). Very helpful comments on this manuscript were provided by Marcia Ward, Gary Rosenthal, Stephen Flach, and 54 Valerie Foreman. We also like thank Kyle Kingsley and Bobbi Buckner for excellent research assistance. The views expressed in this article are those of the 55 author(s) and do not necessarily represent the views of the funding agencies and affiliated institutions.

Health-care organizations in the past several years have de-1 voted a substantial level of effort and resources to the devel-2 opment, adoption, and implementation of clinical practice 3 guidelines (CPGs). The primary goal of CPGs has been to 4 improve clinical outcomes, and the literature suggests that 5 the use of guidelines is helping make progress toward that 6 7 end (27:47:70). For example, Grimshaw and Russell (27) found that, of fifty-nine rigorous scientific studies reviewed, 8 9 all but four studies "detected significant change in the process of care in the direction proposed by the guidelines." 10 Similarly, nine of the eleven studies on patient outcomes 11 found significant improvement. A secondary and often im-12 plicit goal of CPGs has been to improve the management of 13 medical-care resources. For example, the Practice Guideline 14 Study Committee of the Institute of Medicine (IOM) iden-15 tified six criteria for guideline development, two of which 16 were directly related to cost: cost per person of managing the 17 problem and potential of a guideline or assessment to reduce 18 costs (38). In addition, many of the medical societies that 19 20 create clinical practice guidelines have emphasized the role of guidelines in controlling medical-care costs (3). 21

The potential contribution of clinical practice guidelines 22 to the management of health-care costs is particularly rele-23 vant today, as the resurgence in health expenditure inflation 24 has markedly increased pressure on payers and providers 25 to seek new ways to control cost inflation while maintain-26 ing the gains in quality and safety achieved during the past 27 decade. The literature on the cost effects of clinical practice 28 guidelines, however, is relatively underdeveloped, focusing 29 chiefly on the primary clinical effects of a guideline, such 30 as changes in lengths of stay or the substitution of one in-31 tervention for another (28). But as clinical practice becomes 32 increasingly managed and integrated, the economic effects 33 of process changes in general and CPGs in particular are 34 likely to extend to other components of the care process. In 35 addition to the direct clinical effects of CPGs, adoption and 36 37 implementation are likely to result in changes in many of the organizational structures and routines that support clini-38 39 cal decision making, including human resources, information systems, and other aspects of clinical management. 40

The overall objective of this article is to review the theo-41 retical and conceptual dimensions of how the implementation 42 of CPGs-a component of health-care process innovation-43 44 is likely to affect treatment costs. An important limitation of the extant literature on the cost effects of CPGs is that the 45 main focus has been the effect of CPGs on clinical adaptation; 46 that is, changes in the clinical process attributable to the CPG 47 intervention. We submit that the process innovation aspects 48 49 of CPGs require changes in both clinical and organizational 50 dimensions. Thus, an accurate assessment of the economic and cost effects of clinical practice guidelines should include 51 consideration of clinical and organizational effects. 52

53 To put forth a framework that includes organizational 54 dimensions, we conducted an extensive review of the lit-55 erature on the effects of clinical practice guidelines. We queried MEDLINE, PubMed, Cochrane Database of Systematic Reviews, ABI/INFORM Global, Academic Search Elite, EBSCOhost, and EconLit with the following search terms: clinical practice guidelines, effects of clinical practice guidelines, and economic/cost effects of clinical practice guidelines. We conducted separate queries of the same databases using search terms related to process change, including health-care business process reengineering, total quality management, change initiatives, and evidence-based management. The searches identified several key review articles on the clinical effectiveness of various clinical practice guidelines. Those reviews form the basis for our review of clinical effects, but we also supplement that discussion with additional literature that confirmed, updated, or added to the findings of the key review articles. The primary goals of our review of the literature were to (i) assess the overall findings related to the potential economic and cost effects of clinical practice guidelines, and (ii) assess the extent to which studies take into consideration clinical and organizational effects.

To summarize, our review of the literature identified four primary clinical effects of guidelines on costs: substitution, appropriate utilization, length of stay, and prevention. We also found, consistent with our hypothesis, that many researchers observed important organizational changes concurrent with clinical changes. However, even in cases where organizational effects were observed, researchers typically did not attempt to include those effects in their economic evaluations. Our review identified five organizational factors that are likely to affect the relationship between CPGs and total treatment costs: implementation, coordination of care, learning-by-doing, human resource management, and information management. The following section defines clinical practice guidelines and briefly reviews the literature on the economic effects of guidelines associated with changes in clinical practice. A discussion of the economic effects of guidelines associated with organizational changes follows.

BACKGROUND

Clinical practice guidelines have been defined by the IOM as "systematically developed statements to assist practitioner and patient decisions about appropriate health care for specific clinical circumstances" (37). The wide range of initiatives that can be classified as clinical practice guidelines complicates the task of reaching any general conclusions about the effects of guidelines. To address this issue, several researchers have put forth guideline classification schemes, with groupings generally corresponding to similarities in guideline objectives. Rolnick and O'Connor (66), for example, suggest that the majority of guidelines fall into one of four clinical domains: preventive care, chronic disease care, acute care, and symptom-driven care.

At a sufficient level of abstraction, clinical practice guidelines can be considered an integral part of innovation and adaptation of health-processes. Process innovation

consists of a family of adaptive strategies that encompass 1 "the envisioning of new work strategies, the actual process 2 design activity, and the implementation of change in all its 3 complex technological, human, and organizational dimen-4 sions" (17). Process innovations aimed chiefly at improv-5 ing quality often have a close secondary goal of decreas-6 7 ing operating costs; for example, according to Hackman and Wageman (31), "the costs of poor quality (such as inspection, 8 9 rework, lost customers, and so on) are far greater than the costs of developing processes that produce high-quality prod-10 ucts and services." Process innovation typically cuts across 11 multiple departments and multiple service and product lines. 12 This finding is particularly relevant in the case of large-scale 13 process change referred to variously as total quality manage-14 ment, continuous quality improvement, or business process 15 reengineering (31;80). 16

To capture the total cost effects of practice guidelines, each element of process innovation should be considered (Figure 1). Once a health-care facility has identified a need for

17

18

19

Figure 1. The economic effects of clinical practice guidelines
 (CPG). Source: Authors' review of the literature. (+) indicates
 that the hypothesized effect on costs is positive; (-) indicates
 that the hypothesized effect on costs is negative.

process improvement, the process of implementation is one that involves changes in coordination, human resources, and information management. Guideline implementation costs are likely to be offset to some degree by gains from organizational learning and related effects, and there are likely to be ongoing savings as the organization applies modified production processes, learns, and masters the improved processes. As the organization makes these changes, the clinical effects of CPGs are attained. These effects include substitution, appropriate utilization, changes in length of stay, and prevention. Accordingly, guidelines are likely to involve simultaneous adaptation in both the structure of the adopting organization and the process of clinical decision making therein. Both of these factors-organizational and clinical adaptation-are likely to affect the costs of providing care.

Clinical adaptation is the most commonly reported economic effect of guidelines. Adaptation in clinical decision making is analogous to what the IOM refers to as changes in "microsystems of care" (39). Microsystems are the "small units of work that actually give the care that the patient experiences" (4). The IOM report identified several areas in which the effectiveness of microsystems of care can be enhanced through redesign. Many of the microsystem redesign efforts identified by the IOM report—including improvements in consumer focus, information sharing, evidence-based decision making, and economic efficiency—have also been identified as explicit goals of clinical practice guidelines.

The most-commonly reported cost effect of CPGs pertains to clinical standardization. In most cases, practice guidelines are designed to move care toward standardization by combining elements of evidence-based medicine and cost-effectiveness analysis. Evidence-based medicine refers to treatment decisions guided by prevailing biomedical and scientific knowledge. Cost-effectiveness analyses allow distinctions to be made among prevailing treatment options according to costs per added benefit (i.e., value). Clinical standardization is a goal of all four types of practice guidelines.

Several studies have found that, in general, clinical standardization results in decreased treatment costs. The mostcommon cost-reducing standardization effect identified in the literature is the substitution of one treatment protocol for a different (guideline-recommended) treatment protocol, where the guideline intervention is either less expensive, more effective, or both (19;36;54;56;60;61;63;64). The next most-commonly cited effect of standardization is reducing the rate of inappropriate inpatient hospital admissions, typically by substituting outpatient services for inpatient services (11;58). Finally, clinical standardization often results in reductions in length of inpatient stays, due either to explicit length of stay targets specified by the guideline or moreeffective treatment during the stay (9;14;78).

Although standardization is often touted as a cost-saving tool, it does not always result in lower costs. For example, Suarez-Almazor et al. (71) found that low back pain

guidelines led to a threefold increase in lumbar radiography, 1 compared with a standard care that infrequently included 2 imaging procedures of the lower back. Similarly, Browman 3 (8) reported that an oncology guideline initiative resulted in 4 a \$16 million expenditure increase attributable to higher uti-5 lization of new cancer drugs. Hu et al. found that, for hip 6 7 fracture patients at high risk for pressure ulcers, guideline 8 implementation costs and current practice costs were nearly equal overall (36). However, treatment of paraplegic patients 9 was associated with a 19 percent lower implementation cost, 10 and treatment in intensive-care units and skilled nursing 11 12 facilities (relative to acute care) was associated with 22-24 percent higher implementation costs, relative to non-13 guideline practice (36). 14

An important aspect of clinical standardization is the 15 application of evidence-based medicine to the management 16 of chronic diseases. Some have argued that, for certain kinds 17 of chronic conditions and behavioral risk factors, societal 18 cost-effectiveness is maximized when prevention is a prior-19 20 ity (52). Smoking cessation guidelines, for example, consistently have been shown to lower treatment costs. Cromwell 21 et al. found that, in general, the cost per life-year saved and 22 the cost per quality-adjusted life-year decreased as the adop-23 tion and intensity of smoking cessation guidelines adher-24 ence increased. Furthermore, the number of people quitting 25 smoking increased as the intensity of the smoking-cessation 26 intervention increased (15). 27

28 Whereas it is generally assumed that many prevention guidelines exhibit cost-saving properties, there is inconsis-29 tent evidence to support such a claim. Some types of preven-30 tive care results in cost savings for individual patients but not 31 larger populations of patients (24), and the cost-effectiveness 32 33 ratios of many preventive interventions have been found to be extraordinarily high (41;74). Similarly, increased utiliza-34 tion of screening may lead to increased diagnostic discov-35 ery, thereby increasing the probability of future medical-care 36 37 utilization. This sequence of events may be relevant particularly in cases where there is no clear benefit to screening 38 39 (51;55).

ORGANIZATIONAL ADAPTATION

40

41

42

Organizational adaptation refers to changes in "the func-43 44 tioning of the organizations that house or otherwise support microsystems" (4). Identifying best practices is a central or-45 ganizational goal of clinical practice guidelines, analogous to 46 the "evidence-based management" increasingly common in 47 48 business administration (20;45;77). We submit that the adop-49 tion and implementation of clinical practice guidelines po-50 tentially have several important secondary organization-level economic effects. These effects have been largely ignored in 51 economic assessments of guidelines. Moreover, it is possible, 52 in some cases, that organization-level economic effects out-53 54 weigh clinical-level economic effects. We propose a simple framework that considers the secondary economic effects re-55

lated to implementation, coordination, learning, human resource management, and information management (Figure 1).

Implementation

The first component is straightforward: organizations incur non-trivial implementation costs as clinical practice guidelines are adopted and diffused. Implementation costs can be substantial and non-recoverable due to rigid pricing mechanisms and imprecise linkages between price and quality (23;29;68). From a societal perspective, the operating costs of guideline implementation also must take into account the fixed costs of guideline development, dissemination, and maintenance across institutions (23;47).

Coordination and Learning

One of the most direct linkages between CPGs and business process reengineering is the role of coordination. Guidelines have the potential to reduce treatment variation, which can lead to two different kinds of managerial efficiencies. Reduction in treatment variation is likely to lead to improvements in coordination of inventory and supply chain management, utilization of shared resources, and coordination and integration with pharmacy services (e.g., 6;35). Clinical standardization is also likely to enhance the learning process. Learning occurs as the experience of production in one time period influences the production in a later time period; that is, the production process is assumed to have some degree of flexibility and can change over the relevant range of production (26;53;59). The implication is that the costs of producing the first batch of output are greater than the costs of the producing a subsequent batch, due to the learning that occurred during the production of the first batch. Assuming that experiences of producing the first batch can be applied to the second batch (and other subsequent batches), the average costs of production are expected to decline as output increases. Clinical standardization allows health-care organizations to focus on a limited range of production processes, which are likely to enhance the learning process by ensuring that decision-making situations are repeated in sufficiently large numbers (69;72;73).

Human Resource Management

Guidelines are also likely to affect costs by potentially creating incentives to improve human resource management and employee productivity. Human resources are essential to successful organizational learning and adaptation (79). The linkage between employee management and CPGs has three components: routines, decentralization, and identity.

First, CPGs provide a codified set of routines (57). Process innovations and change initiatives generally seek to differentiate between routines performed solely because "they have always been done that way" and those performed because they are the most-efficient relative to other feasible alternatives.

Second, process innovation recognizes the value of decentralizing the decision-making process, allowing key

decision making to migrate to the most appropriate level 1 (80). CPGs have the potential to empower caregivers at all 2 levels to make treatment decisions provided that guideline 3 protocol is followed within an acceptable range of variation 4 (32;44;75). Moreover, guidelines potentially provide greater 5 clarity to the division of tasks, in addition to providing tangi-6 7 ble goals for those tasks. Role clarification has the potential to 8 improve the coordination and scheduling of human resources and to more effectively use knowledge, skills, and training 9 (46;65). Role clarification is likely to offer decision-making 10 assistance to clinical managers faced with having to make fre-11 quent resource allocation decisions (2;65). Decentralization 12 does not necessarily suggest diminished control. Decentral-13 ization allows decision making to occur at the optimal level, 14 in effect triaging decision making to eliminate bottlenecks 15 and other obstacles. Decentralization is feasible when deci-16 sion criteria have been codified; hence, decentralization may 17 be accompanied by increased bureaucratic controls. 18

Third, guidelines have the potential to encourage em-19 20 ployees to internalize the overall objectives of the organization, thereby increasing the degree to which employees iden-21 tify with the organization. Employees who have higher levels 22 of identity with the organization, in some cases, may exert 23 greater effort on the job, which in turn has the potential to 24 lower production costs (1). CPGs offer discrete performance 25 targets (e.g., number of diabetics receiving a foot exam), and 26 the attainment of these goals has the potential to increase 27 employee pride and motivation (50), as has been found to be 28 the case with related change initiatives (1). 29

Information Management

30

31

32

33 As CPGs diffuse among providers, it is likely that the demand for information systems to implement guidelines will 34 grow. Consequently, CPGs may have the indirect effect of 35 initially raising the costs of information management, but 36 37 then lowering the costs of information management as systems improve and are applied to broader ranges of patients. 38 39 The health industry trade press is replete with examples of provider investment in information and information technol-40 ogy that can be traced, in part, to health-care organizations' 41 decisions to adopt and implement clinical protocols, guide-42 lines, and evidence-based medicine (13;18;22;40;48;49;75). 43

44 To effectively implement CPGs, particularly those aimed at chronic disease management, detailed information must be 45 maintained on patients, treatments, staffing, inventories, and 46 resource use. It is also likely that the ability of the health-care 47 organization to take advantage of economies from learning 48 49 will depend on the ability of the firm to process information during the production process and then apply that informa-50 tion appropriately (30). Such information is most useful if it is 51 available at the time that it is needed, as patients are undergo-52 ing treatment and as clinical decisions need to be made (42). 53 54 For example, the use of automated decision support tools for immunization increased appropriate use and decreased in-55

appropriate use of several vaccines (21). Similarly, Casalino et al. (12) found that, among several key factors, clinical information technology was the variable most strongly associated with greater use of care management processes, of which CPGs are part. Hence, there is a bilateral relationship between guidelines and information. Guidelines to some extent may foster greater investment in and use of information and information technology, and implementation of CPGs is enhanced through the application of automated management information systems.

DISCUSSION

Analyses of cost effects of CPGs are likely to be more accurate if they take into account the effects of concomitant organizational effects. Our review of the theory and published evidence identified five organizational factors relevant to the assessment of the effect of CPGs on the costs of care: implementation, coordination, learning, human resource management, and information management (Figure 1). The hypothesized direction of the effects of clinical and organizational factors is mixed. The net effect of CPGs on costs in organizational dimensions will depend on whether the costreducing properties of coordination and learning and human resource management offset potential cost increases due to implementation and information management. Studies of the cost effects of CPGs should attempt, to the extent possible, to measure the effects of each of these organizational factors.

In the course of reviewing the literature, we observed five important methodological and measurement issues in studies of guidelines and costs: heterogeneity in guideline composition, potential endogeneity of guideline adoption, insufficiently long study time frames, measurement problems, and difficulty assessing guideline adherence. In addition, as we have argued here, a common limitation is lack of identification of concomitant organizational effects. Each of these limitations is likely to impact the relationship between CPG implementation and costs.

Perhaps the most challenging aspect of the literature review was the "apples and oranges" problem: what appears to be a trend for one type of guideline does not necessarily hold true for a different guideline, even if guidelines address similar issues (e.g., evidence-based substitution). Hence, an alternate review strategy would have been to limit the review to, for example, all cost studies of the same set of COPD guidelines. Unfortunately, we were not able to find more than one or two cost-related articles pertaining to the exact same set of guidelines.

Second, the potential endogeneity of guideline adoption is a problem in many studies of the cost effects of guidelines. Adoption of CPGs may be a function of financial performance. Efficient firms may be more likely to adopt because they have innovative management, whereas inefficient firms also may be more likely to adopt because they would have the most to gain. In either case, the adoption of CPGs is endogenous to financial performance. The problem of en dogeneity can be mitigated through the use of a two-stage
 instrumental variable modeling of adoption (stage one) and
 the effect of adoption on financial performance (stage two).
 We were unable to identify any study that explicitly acknowl edged this problem.

7 Another persistent issue throughout the literature is the issue of time frame. Most studies reviewed do not consider 8 9 the cumulative costs or savings over time of future medical interventions attributable to guideline adherence. Discov-10 ery associated with screening- and population-based disease 11 12 management has the potential to decrease or increase costs. However, it is not clear from the literature whether a suffi-13 ciently long time frame would reveal whether discovery costs 14 are offset or augmented by future treatment costs. In cases 15 where CPGs result in increased resource use, it is often the 16 case that improved outcomes, over a sufficiently long period 17 of time, may result in net savings and improved economic 18 efficiency. There is relatively little literature directly support-19 20 ing this conjecture. An additional problem associated with time frame is that process change is expected to have a lagged 21 effect on financial performance. This effect may be less im-22 portant in studies where the primary outcome is changes in 23 utilization rates from one period to the next but may be more 24 of a problem in studies attempting to measure organizational 25 spillovers from adoption. 26

In addition to observed methodological issues, studies of 27 the effect of practice guidelines on costs are likely to face sev-28 eral important measurement issues. These issues include im-29 precise measures of processes (i.e., difficulty in some cases in 30 determining the extent to which practice guidelines had been 31 followed), difficulty measuring outcomes, and difficulty ac-32 counting for differences in the patient population under study 33 (e.g., age, sex, socioeconomic status, and comorbidities). 34

Finally, health-care firms' reporting of guideline adop-35 tion may suggest operationally different actions (10;76). 36 37 Given the relatively large menu of activities falling under the process change umbrella, measurement of the existence 38 39 and intensity of process change is often a judgment call on the part of the researcher. The degree of guideline adherence 40 is directly measurable in some studies, either through ex-41 amination of medical records, administrative data, or direct 42 survey of practitioners. However, in many cases the direct 43 measurement of guideline adherence is difficult (33;43). 44

One of the chief reasons for the difficulty in assessing 45 adherence is the wide variety of factors associated with ad-46 herence. For example, demonstrating the linkage between 47 organizational adaptation and clinical adaptation, Vaughn 48 49 et al. (76) found that adherence to alcohol, depression, and 50 tobacco screening guidelines in the Veterans Administration health system varied according to mission, capacity, 51 degree of professionalism, and patient population character-52 istics. Physician and hospital adherence to guidelines also 53 54 depends on the quality of evidence of the guideline, the strength of the evidence used in formulating the guideline, 55

the attitudes of providers as to the usefulness and relevance of the guideline, and patient acceptance of the guideline (5;8;10;25;33;43;66;67;76).

Provider adherence has also been shown to depend on financial incentives (16;25;34), as well as other external incentives, such as performance reports to outside organizations and patient satisfaction reports (12). Physicians reimbursed on a fee-for-service basis (or a fee schedule where administered prices are higher than average costs) face financial incentives to adhere to CPGs aimed at increasing the volume and intensity of billable services. In contrast, physicians reimbursed on a capitated basis (or a fee schedule where administered prices are lower than average costs) face financial incentives to adhere to guidelines aimed at decreasing the volume and intensity of billable services (66). Malpractice litigation has also affected physician adherence as some malpractice insurers have required physicians to comply with guidelines (7). Finally, patient adherence to guidelines-a key component in assessing the costs and benefits of guidelines-has been shown to vary by age, race, education, comorbidities, and income (62;76).

CONCLUSIONS

Clinical practice guidelines have the potential to improve economic efficiency by reducing treatment and operational costs while improving outcomes. Most of the studies we reviewed found a cost-reducing guideline effect. However, most studies fail to adequately address key issues concerning study design (mainly perspective and time frame) and related organizational adaptation attributable to guideline adoption and adherence. In addition, there appears to be large variation in the magnitude of cost effects according to the content and design of the guideline in question, thereby limiting the extent to which broad generalizations can be made. Our review represents an initial step in conceptualizing these issues. Clearly, more work needs to be done to improve methods to calculate the economic impact of innovations in the process of care.

CONTACT INFORMATION

John E. Schneider, PhD (john-schneider@uiowa.edu), Assistant Professor, Department of Health Management and Policy, College of Public Health, University of Iowa, 200 Hawkins Drive, E204 GH, Iowa City, IA 52242; Core Investigator, Center for Research in the Implementation of Innovative Strategies in Practice (CRIISP), Veterans Administration Medical Center, Iowa City, IA 52246

N. Andrew Peterson, PhD (Andrew-pterson@uiowa.edu), Assistant Professor, Department of Community and Behavioral Health, College of Public Health, University of Iowa, 200 Hawkins Drive, E238 GH; Director for Research & Deputy Director, Iowa Prevention Research Center, University of Iowa, 1215 Westlawn Building, Iowa City, IA 52242 Thomas E. Vaughn, PhD (tom-vaughn@uiowa.edu), Associate Professor, Department of Health Management and

- 1 Policy, College of Public Health, University of Iowa, 200
- 2 Hawkins Drive, E230 GH, Iowa City, IA 52242; Senior Sci-
- 3 entist, Center for Research in the Implementation of Innova-
- 4 tive Strategies in Practice (CRIISP), Veterans Administration
- 5 Medical Center, Iowa City, IA 52246
- 6 **Eric N. Mooss**, MHA (emooss@alegent.org), Operations 7 Director, Radiation Oncology, Alegent Health, 7500 Mercy
- 7 Director, Radiation Oncology, Alegent Health, 7500 Mercy8 Road, Omaha, NE 68124
- Bradley N. Doebbeling, MD, MSc (bdoebbel@iupui.edu),
 Director, Indiana University Center for Health Services
 and Outcomes Research, Professor of Health Services Research, Indiana University; Director, Health Services Research & Development, Roudebush VA Center on Implementing Evidence-Based Practice, Indianapolis, IN 46202
 - REFERENCES

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

- Akerlof GA, Kranton RE. Identity and the economics of organizations. J Economic Perspect. 2005;19:9-32.
- 2. Anand G. *The big secret in health care: Rationing is here*. The Wall Street Journal. 2003;A1-A6.
- Audet A, Greenfield S, Field M. Medical practice guidelines: Current activities and future directions. *Ann Intern Med.* 1990;113:709-714.
- Berwick DM. A User's Manual for the IOM's 'Quality Chasm' Report. *Health Affairs*. 2000;21:80-90.
- 5. Borkowski N, Allen W. Using organizational behavior theories to manage clinical practice guideline implementation. *J Am Acad Business*. 2002;1:365-370.
- Brady L. Purchasers pursue process to standardize orthopedic implants. *Health Industry Today*. 1994;57:1-3.
- Brennan TA. Methods for setting priorities for guideline development: Medical malpractice. In: IOM, ed. Setting priorities for clinical practice guidelines. Washington, DC: National Academies Press; 1995:99-110.
- Browman GP. Improving clinical practice guidelines for the 21st century: Attitudinal barriers and not technology are the main challenges. *Int J Technol Assess Health Care*. 2000;16: 959-968.
- Buckley CJ, Patterson DE, Manning LG, Lee SD. Quality vascular surgical care: The importance of innovation and change in an era of dwindling reimbursement. *South Med J.* 2001;94:411-416.
- Cabana MD, Rand CS, Powe NR, et al. Why don't physicians follow clinical practice guidelines? *JAMA*. 1999;282:1458-1465.
- Carpenter CE, Nash DB, Johnson NE. Evaluating the cost containment potential of clinical guidelines. *QRB Qual Rev Bull*. 1993;19:119-123.
- 1993;19:119-123.
 12. Casalino LP, Gillies RR, Shortell SM, et al. External incentives, information technology, and organized processes to improve health care quality for patients with chronic diseases. *JAMA*. 2003;289:434-441.
 13. Coddington DC. Moore KD. Leading IDSs head the call to
 - 13. Coddington DC, Moore KD. Leading IDSs heed the call to invest in IT. *Healthc Financ Manage*. 2002;56:36-40.
- 52 14. Costantini O, Huck K, Carlson MD, et al. Impact of a guideline53 based disease management team on outcomes of hospital54 ized patients with congestive heart failure. *Arch Intern Med.*55 2001;161:177-182.

- Cromwell J, Bartosch WJ, Fiore MC, et al. Cost effectiveness of the clinical practice recommendations in the AHCPR guideline for smoking cessation. *JAMA*. 1997;278:1759-1766.
- Cruz-Correa M, Gross CP, Canto MI, et al. The impact of practice guidelines in the management of Barrett esophagus. *Arch Intern Med.* 2001;161:2588-2595.
- Davenport TH. Process innovation: Reengineering work through information technology. Boston, MA: Harvard Business School Press; 1993.
- Devaraj S, Kohli R. Information technology payoff in the health care industry: A longitudinal study. J Manage Inform Syst. 2000;16:41-67.
- Devlin JW, Holbrook AM, Fuller HD. The effect of ICU sedation guidelines and pharmacist interventions on clinical outcomes and drug cost. *Ann Pharmacother*. 1997;31:689-695.
- 20. Finkler SA, Ward DM. The case for the use of evidence-based management research for the control of hospital costs. *Health Care Manage Rev.* 2003;28:348-365.
- Flanagan JR, Doebbeling BN, Dawson J, Beekmann S. Randomized study of online vaccine reminders in adult primary care. *Proc AMIA Symp.* 1999;755-759.
- 22. Forgionne GA. A management support system to facilitate TQM for hospitals. *Information Syst Eng.* 1996;2:119-138.
- 23. Gandjour A, Lauterbach KW. A method for assessing the cost effectiveness and the break-even point of clinical practice guidelines. *Int J Technol Assess Health Care*. 2001;14:503-516.
- 24. Granata AV, Hillman AL. Competing practice guidelines: Using cost-effectiveness analysis to make optimal decisions. *Ann Intern Med.* 1998;128:56-63.
- 25. Greene RA, Beckman H, Chamberlain J, et al. Increasing adherence to a community-based guideline for acute sinusitis through education, physician profiling, and financial incentives. *Am J Manage Care*. 2004;10:670-678.
- Greve HR. Organizational learning from performance feedback: A behavioral perspective on innovation and change. Cambridge: Cambridge University Press; 2003.
- Grimshaw JM, Russell IT. Effect of clinical guidelines on medical practice: A systematic review of rigorous evaluations. *Lancet.* 1993;342:1317-1322.
- 28. Grimshaw JM, Hutchinson A. Clinical practice guidelines–Do they enhance value for money in health care? *Br Med Bull*. 1995;51:927-940.
- 29. Grol R. Between evidence-based practice and total quality management: The implementation of cost-effective care. *Int J Qual Health Care*. 2000;12:297-304.
- Gunasekaran A, Nath B. The role of information technology in business process reengineering. *In J Product Economics*. 1997;50:91-104.
- Hackman JR, Wageman R. Total quality management: Empirical, conceptual, and practical issues. In: Scott WR, Cole RE, eds. *The quality movement & organization theory*. London: Sage Publications; 2000:23-48.
- 32. Hall L, Eccles M. Case study of an inter-professional and interorganisational programme to adapt, implement and evaluate clinical guidelines in secondary care. *Clin Perform Qual Health Care*. 2000;5:72-82.
- Harvey G, Loftus-Hills A, Rycroft-Malone J, et al. Getting evidence into practice: The role and function of facilitation. *J Adv Nurs*. 2002;37:577-588.

- Haycox A, Bagust A, Walley T. Clinical guidelines-The hidden costs. *Br Med J.* 1999;318:391-393.
- 35. Hesson D. Indiana system finds standardizing pays off. *Hosp Materials Manage*. 2004;29:10-11.
- Hu TW, Stotts NA, Fogarty TE, Bergstrom N. Cost analysis for guideline implementation in prevention and early treatment of pressure ulcers. *Decubitus*. 1993;6:42-46.
- Institute of Medicine. *Clinical practice guidelines: Directions for a new program*. Washington, DC: National Academy Press; 1990.
- Institute of Medicine. Setting priorities for clinical practice guidelines. Washington, DC: National Academy Press; 1995.
- 39. Institute of Medicine. *Crossing the quality chasm: A new health system for the 21st century.* Washington, DC: National Academy Press; 2001.
- 40. James AA, Shorr RI, Flach SD, et al. *Are clinicians aware* of computer reminders to implement practice guidelines? A national survey. Society of General Internal Medicine Southern Regional Meeting. 2003. New Orleans, LA.
- 41. Kenkel DS. Prevention. In: Culyer AJ, Newhouse JP, eds. *Handbook of health economics*. New York: Elsevier Science; 2000:1675-1720.
- 42. Kibbe DC. Information management and technology for CQI. In: McLaughlin CG, Kaluzny AD, eds. *Continuous quality improvement in health care: Theory, implementation, and applications*. Gaithersburg, MD: Aspen Publishers, Inc; 1999:
- Kitson A, Harvey G, McCormack B. Enabling the implementation of evidence based practice: A conceptual framework. *Qual Health Care.* 1998;1998:149-158.
- Kizer KW. Promoting innovative nursing practice during radical health system change. *Nurs Clin North Am.* 2000;35:429-441.
- 45. Kovener AR, Elton JJ, Billings J, Short JH. Evidence-based management. *Front Health Serv Manage*. 2000;16:3.
- 46. Laliberty R. Decentralizing health care management: A manual for department heads and supervisors. Owings Mills, MD: National Health Publishing; 1988.
- 47. Larson E. Status of practice guidelines in the United States: CDC guidelines as an example. *Prev Med.* 2003;36:519-524.
- Leatherman S, Berwick DM, Iles D, et al. The business case for quality: Case studies and an analysis. *Health Affairs*. 2003;22:17-30.
- 49. Lewis AG. Streamlining health care operations: How lean logistics can transform health care organizations. San Francisco, CA: Jossey-Bass; 2001.
- 50. Lohr KN. Guidelines for clinical practice: Applications for primary care. *Int J Qual Health Care*. 1994;6:17-25.
- 51. Lu-Yao G, Albertsen PC, Stanford JL, et al. Natural experiment examining impact of aggressive screening and treatment on prostate cancer mortality in two fixed cohorts from Seattle area and Connecticut. *Br Med J.* 2002;325:740-745.
- 52. Macintyre CR, Plant AJ, Hendrie D. The cost-effectiveness of evidence-based guidelines and practice for screening and prevention of tuberculosis. *Health Econ.* 2000;9:411-421.
- March JG. Exploration and exploitation in organizational learning. In: Cohen MD, Sproull LS, eds. *Organizational learning*. Thousand Oaks, CA: Sage; 1996:101-123.
- 54. Mille D, Roy T, Carrere M, et al. Economic impact of harmonizing medical practices: Compliance with clinical prac-

tice guidelines in the follow-up of breast cancer in a french comprehensive cancer center. *J Clin Oncol.* 2000;18:1718-1724.

- 55. Miller AB, To T, Baines CJ, Wall C. The Canadian National Breast Screening Study-1: Breast cancer mortality after 11 to 16 years of follow-up. *Ann Intern Med.* 2002;137:305-312.
- Mostafa G, Sing RF, Matthews BD, et al. The economic benefit of practice guidelines for stress ulcer prophylaxis. *Am Surg.* 2002;68:146-150.
- 57. Nelson RR, Winter SG. An evolutionary theory of economic change. Cambridge, MA: Belknap Press; 1982.
- Nestor A, Calhoun AC, Dickson M, Kalik CA. Cross-sectional analysis of the relationship between national guideline recommended asthma drug therapy and emergency/hospital use within a managed care population. *Ann Allergy Asthma Immunol.* 1998;81:327-330.
- 59. Nooteboom B. *Learning and innovation in organizations and economies*. New York: Oxford University Press; 2000.
- O'Brien JA, Jacobs LM Jr, Pierce D. Clinical practice guidelines and the cost of care. *Int J Technol Assess Health Care*. 2000;16:1077-1091.
- 61. O'Connor PJ, Solberg LI, Christianson J, et al. Mechanism of action and impact of a cystitis clinical practice guideline on outcomes and costs of care in an HMO. *Jt Comm J Qual Improv.* 1996;22:673-682.
- 62. Phillips KA, Kerlikowske K, Baker C, et al. Factors associated with women's adherence to mammography screening guide-lines. *Health Serv Res.* 1998;33:29-53.
- 63. Piecoro LT, Potoski M, Talbert JC, Doherty DE. Asthma prevalence, cost, and adherence with expert guidelines on the utilization of health care services and costs in a state Medicaid population. *Health Serv Res.* 2001;36:357-371.
- 64. Pitimana-aree S, Forrest D, Brown G, et al. Implementation of a clinical practice guideline for stress ulcer prophylaxis increases appropriateness and decreases cost of care. *Intensive Care Med.* 1998;24:217-223.
- 65. Rafferty AM, Ball J, Aiken LH. Are teamwork and professional autonomy compatible, and do they result in improved hospital care? *Qual Health Care*. 2001;10:ii32-ii37.
- Rolnick SJ, O'Connor PJ. Assessing the impact of clinical guidelines: Research lessons learned. J Ambul Care Manage. 1997;20:47-55.
- 67. Shekelle PG, Kravitz RL, Beart J, et al. Are nonspecific practice guidelines potentially harmful? A randomized comparison of the effect of nonspecific versus specific guidelines on physician decision making. *Health Serv Res.* 2000;34:1429-1448.
- Silagy CA, Weller DP, Lapsley H et al. The Effectiveness of Local Adaptation of Nationally Produced Clinical Practice Guidelines. *Fam Pract*. 2002;19:223-230.
- 69. Skinner W. The focused factory. *Harvard Business Rev.* 1974;52:113-120.
- Smith TJ, Hillner BE. Ensuring quality cancer care by the use of clinical practice guidelines and critical pathways. *J Clin Oncol.* 2001;19:2886-2897.
- Suarez-Almazor ME, Belseck E, Russell AS, Mackel JV. Use of lumbar radiography for the early diagnosis of low back pain. *JAMA*. 1997;277:1782-1786.
- 72. Teece DJ, Pisano G. The dynamic capabilities of firms: An introduction. *Indust Corporate Change*. 1994;3:537-556.

54

Clinical practice guidelines and organizational adaptation

 Teece DJ, Rumelt R, Dosi G, Winter S. Understanding corporate coherence: theory and evidence. *J Econ Behav Org.* 1994;23:1-30.

- 74. Tengs TO, Adams ME, Pliskin JS, et al. Five hundred lifesaving interventions and their cost-effectiveness. *Risk Anal*. 1995;15:369-391.
- 75. Varrone C. Enduring cost advantage. II. Richest sources of savings: Lessons from America's lowest-cost hospitals. Washington, DC: The Governance Committee, The Advisory Board Company.
- Vaughn TE, McCoy KD, BootsMiller BJ, et al. Organizational predictors of adherence to ambulatory care screening guidelines. *Med Care*. 2002;40:1172-1185.

- 77. Walshe K, Rundall T. Evidence-based management: From theory to practice in health care. *Milbank Q*. 2001;79:429-457.
- Weingarten SR, Riedinger MS, Conner L, et al. Practice guidelines and reminders to reduce duration of hospital stay for patients with chest pain. *Ann Intern Med.* 1994;120:257-263.
- 79. Winter SG. Organizing for continuous improvement: Evolutionary theory meets the quality revolution. In: Cohen MD, Sproul LS, eds. *Organizational learning*. Thousand Oaks, CA: Sage; 1996:460-483.
- 80. Wruck KH, Jensen MC. Science, specific knowledge, and total quality management. *J Account Econ*. 1994;18:247-287.

QUERIES TO THE AUTHOR

Q1. Please confirm that changes made to sentence are correct.

